Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

نویسندگان

  • Wenjing Su
  • Benjamin S. Cook
  • Yunnan Fang
  • Manos M. Tentzeris
چکیده

As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.

Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-print...

متن کامل

Low-cost Flexible All-inkjet-printed Microfluidic Sensor

This paper demonstrates a novel and low-cost additive manufacturing process for flexible and disposable microfluidics on virtually any substrate, with which the first “all-inkjet-printed” microfluidic microwave sensor is prototyped. A 30-μm-high 600-μm-wide SU-8 (polymer) 3-D microfluidic channel and an electromagnetic sensing setting are fabricated with sole reliance on multilayer inkjet-print...

متن کامل

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend

From the bench-mark work on microfluidics from the Whitesides's group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the gr...

متن کامل

Inkjet-printed paperfluidic immuno-chemical sensing device.

This paper reports on an inkjet printing method for the fabrication of lateral flow immunochromatographic devices made from a single piece of filter paper by patterning microfluidic channels and dispensing immunosensing inks, requiring only a single printing apparatus. This "paperfluidic" immunosensing device allows for a less time-consuming and more low-cost fabrication compared with the conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016